Current work and experience

- Lifetime measurement using new MC free method
- Wire-bond failure of CDF silicon module
- Other experience
 - L1 trigger rate study
 - Offline silicon monitoring

Azizur Rahaman University of Pittsburgh

Why measure lifetime?

 HQE (Heavy Quark Expansion) is used to predict the lifetimes hierarchy and ratios:

$$\tau(B^{+}) > \tau(B^{0}) \sim \tau(B_{s}^{0}) > \tau(\Lambda_{b}^{0})$$

$$\tau(B^{+})/\tau(B^{0}) = 1.06 \pm 0.02$$

$$\tau(B_{s}^{0})/\tau(B^{0}) = 1.00 \pm 0.01$$

$$\tau(\Lambda_{b}^{0})/\tau(B^{0}) = 0.88 \pm 0.05$$

hep-ph/0310241

Measurement of lifetimes is good testing tool

• Decay width (Γ) is inversely proportional to lifetime (τ)

$$\Delta\Gamma_s/\Gamma_s=(10\pm5)\%$$
 b K Sensitive to NP hep-ph/04122007

 Trigger is crucial in collecting this data BUT biases lifetime distribution from being exponential Efficiency vs lifetime

How to get from biased data C to the exponential decay time distribution A?

- Need a precise description of trigger efficiency (B)
- Traditional method: Use simulation to get trigger efficiency (B). But can we trust simulation?
- New method: Use data to correct for this bias on an event-by-event basis using event kinematics

MC free method

$$P(t) = P(t|t\epsilon[t_{min}, t_{max}]).P(t_{min}, t_{max})$$

Probability to find an event with decay time t

$$= \frac{\frac{1}{\tau}e^{\frac{-t}{\tau}}}{\int_{t_{min}}^{t_{max}} \frac{1}{\tau}e^{\frac{-t'}{\tau}}dt'} . P(t_{min}, t_{max})$$

Independent of t

First term: Probability to find t given t must be between [t_{min}, t_{max}]

2nd term: Probability that t constrained to lie within those limits

Note: only difference for lifetime cut is the term in the denominator

Task is to find these t_{min} and t_{max} on an event-by-event basis

Acceptance function

- Assume decay kinematics is independent of lifetime
- Slide the event in the direction of B and check if it would be accepted
- Note: unbiased event would be accepted at any lifetime

Acceptance function is a series of top hat function

Could be different for other topology

Signal only fit

 Log likelihood fit to extract the best fitted lifetime

$$P(ct) = P(ct|c\tau, \sigma_{ct}, A_{trig})$$

 Extract lifetimes from variety of modes with different topology

Mode	Truth	Fit
Bu→Dπ	496 μm	$495 \pm 5 \mu m$
Вѕ→фф	438 μm	$443 \pm 5 \mu m$
$\Lambda_b \rightarrow \Lambda_c \pi$	323 μm	$319 \pm 6 \mu m$
В0→Dπ	464 μm	$468 \pm 4 \mu m$

This build-up confidence

Fit including background

PDF with background:

$$P(ct) = P(ct|s) \times P(m_B|s) \times P(s|\sigma_{ct}, A_{trig}) + P(ct|b) \times P(m_B|b) \times P(b|\sigma_{ct}, A_{trig})$$

- σ_{ct} and A_{trig} are different for signal and background
- This leads to "Punzi" effect

hep-ph/0401045

 Tricky signal probability as function of a function (acceptance function)

Lifetime results

Lifetimes

 $B_u^{\pm}:488.5\pm6.2\pm4.4~\mu m$

 $B_d^0:454.3\pm 6.4\pm 4.5~\mu m$

Lifetime ratio:

 $1.075 \pm 0.020 \pm 0.008$

Wire-bond failure

Investigate wire-bond failure of CDF silicon module:

- Wire-bond is widely used to send signal, commands and power connection
- Wire-bonds are perpendicular to magnetic field
- Synchronous readout can excite resonant vibration due to Lorentz force
- No failure reported since measures were taken

NIM A518 (2004)

Other experience

Investigate L1 trigger rate:

- L1 cross section grows with luminosity
- Identify cuts that reduce trigger rate with minimal physics data loss

Offline silicon monitoring tool:

- Make plots and post to the web to monitor the performance of silicon detector
- Run automatically by cron job:
 Using: C++, ROOT, shell scripting, perl, html

hit position in xy-plane

BACK-UP

Fisher Discriminant

Fisher Analysis: Fisher discriminant finds the direction (w) by

- maximize the separation of the projected means
- minimize the the spread of each class at the same time

- Slice the acceptance function in ct bin
- Height of Acc in each bin plus error on ct represent variables of vector v
- Fisher scalar (w.v) is the discriminating variable

Signal probability

- Divide signal by the total
- Get signal probability as a function of fisher scalar

 Fit this with Lagrange Interpolating Polynomial to get event by event information

